Terracotta Irrigation Controller for Latching Solenoids User Manual

Dr Bernie Omodei Measured Irrigation 5/50 Harvey Street East, Woodville Park SA 5011 Mobile 0403 935277

Email bomodei@measuredirrigation.com.au
Website www.measuredirrigation.com.au

March 2023

Terracotta Irrigation Controller for Latching Solenoids with Control Volume Boost Container

Contents

1.	Introduction	page 2
2.	Key features of the Terracotta Irrigation Controller for Latching Solenoids	page 3
3.	Installing the Terracotta Irrigation Controller for Latching Solenoids	page 4
4.	How to use the Terracotta Irrigation Controller for Latching Solenoids	page 5
5.	Control Volume Boost Container	page 7
6.	Conclusion	page 9

1. Introduction

The Terracotta Irrigation Controller for Latching Solenoids is suitable for automatic sprinkler irrigation or drip irrigation. The Terracotta Irrigation Controller for Latching Solenoids includes a valve that operates with water supply pressure in the range 10 kPa to 800 kPa. The interval between irrigation events responds automatically to the on-site prevailing weather conditions (namely, evaporation and rainfall).

All the power required is provided by a small 9 volt battery inside the control box.

Terracotta is porous and so the water level in the pot falls as water seeps through the pot. A float inside the pot floats on the water. When the water level reaches the low level, a magnet inside the float activates the valve so that the valve opens, water rises up the vertical tube, the float switch opens, the latching solenoid valve opens and the irrigation starts. During the irrigation event a control dripper drips water into the pot and the water level rises. When the water level reaches the high level, the magnet inside the float disengages from the valve so that the valve closes, wwater drains from the vertical tube, the float switch closes, the latching solenoid valve closes and the irrigation stops.

Float and the water level

Drain valve and white valve with 15mm inlet and outlet

Float showing the ring magnet at the bottom of the float

Conventional drip irrigation systems control the volume of water discharged by a dripper by using PC (pressure compensating) drippers to control the flow rate and an irrigation controller to control the time. In a domestic garden with mains water supply, many zones are usually required to ensure that the pressure in each zone does not fall below the lower limit for pressure compensation. The irrigation controller is programmed so that each zone is irrigated at a different time.

With identical NPC drippers (including the control dripper) at approximately the same level and negligible variations in the pressure within the zone due to frictional head loss, the Terracotta Irrigation Controller for Latching Solenoids ensures that the volume of water discharged by each dripper during the irrigation event is approximately the same regardless of the pressure. If the water supply pressure decreases, the flow rate of the NPC drippers also decreases. However, the duration of the irrigation event increases automatically to ensure that the control volume of water is discharged by each dripper. For domestic gardens on level ground, the irrigation system can usually be designed so that variations in pressure within the zone due to frictional head loss are negligible.

By using the Terracotta Irrigation Controller for Latching Solenoids in this way, many zones with PC drippers can be combined into a single zone with NPC drippers and a single controller, and so the cost of the irrigation system can be reduced dramatically.

2. Key features of the Terracotta Irrigation Controller for Latching Solenoids

- 1. Use for any size irrigation application with any size latching solenoid valve
- 2. The power supply is a small 9 volt lithium battery inside the control box
- 3. Water supply pressure 10 kPa to 800 kPa
- 4. Use for sprinkler irrigation or drip irrigation
- 5. Use for gravity feed or pressurised irrigation
- 6. Use with PC (pressure compensating) drippers or NPC (non pressure compensating) drippers
- 7. Adjust the water usage rate by adjusting the control dripper
- 8. Adjust the interval between irrigation events by adjusting the float
- 9. Adjusting the water usage rate does not affect the interval between irrigation events, and adjusting the interval between irrigation events does not affect the water usage rate
- 10. Responds automatically to on-site evaporation and rainfall
- 11. The irrigation frequency increases significantly during a heat wave
- 12. The Control Volume Boost Container allows the control volume to be set to any value between 1000 and 1825 mls
- 13. If the adjustable control dripper is replaced by one of the irrigation drippers, then each dripper in the irrigation application will deliver the control volume during the irrigation event
- 14. If the adjustable control dripper is replaced by two of the irrigation drippers, then each dripper in the irrigation application will deliver half the control volume during the irrigation event
- 15. The Control Volume Boost Container allows the interval between irrigation events to be adjusted by adjusting the exposed surface area of the polyester cloth
- 16. Irrigate directly from a rainwater tank without using a pump
- 17. Water in the terracotta pot is protected from debris, algae, mosquitoes and thirsty animals
- 18. Simple and low tech, and therefore fewer things can go wrong
- 19. Leave your irrigation application unattended for months on end

3. Installing the Terracotta Irrigation Controller for Latching Solenoids

- Step 1 Position the Terracotta Irrigation Controller in a suitable location in your garden so that the evaporation at the controller matches the evaporation at your plants.
- Step 2. Connect a water supply to the irrigation controller. The water pressure should be at least 10 kPa during the irrigation event.
- Step 3. Connect the adjustable control dripper to the irrigation zone so that it drips water into the terracotta saucer during the irrigation event.
- Step 4. The control box has 4 colour-coded wires that need to be connected to the latching solenoid and the float switch.

Control box

Connect the **yellow** wire to one of the wires from the float switch.

Connect the **white** wire to the other wire from the float switch.

Connect the **blue** wire to one of the red wire from the latching solenoid.

Connect the green wire to the black wire from the latching solenoid.

If there are 2 latching solenoid valves, connect the second latching solenoid in parallel with the first latching solenoid.

Step 5 (Control Volume Boost Container). Replace the adjustable control dripper by one of the irrigation drippers.

4. How to use the Terracotta Irrigation Controller for Latching Solenoids

Turn on the water supply and the irrigation starts immediately. The control dripper drips water into the terracotta pot during the irrigation. The irrigation stops automatically after the **control volume** of water has dripped into the pot. The control volume is also the volume of water that seeps through the terracotta pot between irrigation events.

The irrigation starts again automatically after the control volume of water has seeped through the pot. The cycle continues indefinitely and so you can leave your garden unattended for months on end. A saucer sits on top of the pot so that the water in the pot is protected from algae, mosquitoes and thirsty animals. There are 6 small drain holes in the saucer.

When using a conventional irrigation controller, you need to set the start time and the end time for each irrigation event. However, with the Terracotta Irrigation Controller for Latching Solenoids you don't need a timer. The duration of the irrigation event is simply the time it takes for the control volume of water to drip into the pot.

The control dripper provided is adjustable. If you reduce the flow rate of the control dripper, it takes a lot longer for the control volume of water to drip into the pot and so the duration of the irrigation event increases and your plants get more water. On the other hand, if you increase the flow rate of the control dripper, the control volume of water drips into the pot more quickly and so the duration of the irrigation event decreases and your plants get less water. Adjust the control dripper so that the irrigation delivers the appropriate amount of water to your plants at their current stage of growth.

The control dripper is adjustable.

The time it takes for the control volume of water to seep through the pot depends on the prevailing onsite weather conditions. When it is hot and dry, the water seeps more quickly and so the interval between irrigation events is shorter. When it is cool and overcast, the water seeps more slowly and so the interval between irrigation events is longer.

If it rains, rainwater collects in the saucer and drains into the pot. This means that the start of the next irrigation event is delayed. In addition to the control volume of water that needs to seep through the pot between irrigation events, any rainwater that has entered the pot between irrigation events also needs to seep through the pot.

To avoid irrigating during the heat of the day, you can turn off the water supply. Alternatively, a tap timer can be used so that water is only available between sunset and sunrise.

The Terracotta Irrigation Controller for Latching Solenoids uses on-site weather data (namely, evaporation and rainfall). Most smart irrigation controllers do not use on-site weather data. Instead they use weather data from the Bureau of Meteorology.

The Terracotta Irrigation Controller can be used for both gravity feed and pressurised irrigation. It can be used with pressure compensating drippers and non pressure compensating drippers. It can also be used with weeper hose or soaker hose.

You can irrigate directly from a rainwater tank by gravity feed without using a pump provided that the water level in the tank is at least 1 metre higher than the valve at the bottom of the Terracotta Irrigation Controller.

It is recommended that you adjust the interval between irrigation events before adjusting the water usage rate. You may need to adjust the interval between irrigation events and the water usage rate as the plants grow and their water requirements change.

Note that the term **water usage rate** refers to the number of litres per week used by the irrigation system.

How to adjust the interval between irrigation events

You can adjust the interval between irrigation events by adjusting the gap between the upper and lower floats. The interval between irrigation events is the time it takes for the control volume of water to seep through the porous terracotta pot. To adjust the gap by 4 mm, rotate the upper float by two and a quarter turns.

Adjusting the interval between irrigation events does not change the water usage rate. For example, if you increase the interval between irrigation events by increasing the gap between the upper and lower floats, the amount of water used during the irrigation event increases automatically to ensure that the water usage rate remains the same.

To adjust the interval between irrigation events, adjust the gap between the upper and lower floats

The following table shows the control volume for various values of the gap between the upper and lower floats.

gap between the upper and lower floats	control volume
zero gap	110 ml
4 mm	144 ml
8 mm	179 ml
12 mm	213 ml
16 mm	247 ml
20 mm	282 ml
24 mm	316 ml
28 mm	350 ml
32 mm	385 ml

Table 1. Control volume for various gaps between the upper and lower floats

The gap between the upper and lower floats should be chosen so that the next irrigation event starts when there is no further soil moisture available to the plants. Soil moisture sensors or probes may be used to determine the soil moisture profile.

How to adjust the water usage rate

Position an empty measuring container under one of the drippers so that water drips into the container during the irrigation event. At the end of the irrigation event check the amount of water in the measuring container. You should also check the moisture in the soil.

If your plants are not getting enough water, reduce the flow rate of the control dripper. Reducing the flow rate of the control dripper increases the duration of the irrigation event and so your plants get more water. If your plants are getting too much water, increase the flow rate of the control dripper.

Adjusting the water usage rate does not affect the interval between irrigation events.

5. Control Volume Boost Container

The Control Volume Boost Container can be connected to the drain valve on the terracotta pot so that the water level in the container is the same as the water level in the terracotta pot. By using the Control Volume Boost Container, the control volume can be set to any value between 1000 ml and 1825 ml (see Table 2). The Control Volume Boost Container can be purchased online at the Measured Irrigation website. A polyester cloth is provided to wick water from inside the container to outside the container to evaporate. Make sure that the polyester cloth is wet at all times. The interval between irrigation events is determined by how quickly water evaporates from the container via the polyester cloth. In additional to adjusting the float, the interval between irrigation events can also be adjusted by exposing more or less of the polyester cloth outside the container. The lid on the container protects the water in the container from debris, algae, mosquitoes and thirsty animals.

Control Volume Boost Container

Control Volume Boost Container connected to the drain valve on the terracotta pot

Adjust the interval between irrigation events by adjusting the exposed surface area of polyester cloth

gap between the upper and lower floats	control volume using the Control Volume Boost Container	
zero gap	1000 ml	
4 mm	1103 ml	
8 mm	1206 ml	
12 mm	1309 ml	
16 mm	1412 ml	
20 mm	1515 ml	
24 mm	1618 ml	
28 mm	1721 ml	
32 mm	1825 ml	

Table 2. Control volume using the Control Volume Boost Container for various gaps between the upper and lower floats

Table 3 shows the volume of water discharged my each irrigation dripper for various choices for the control dripper and various choices for the gap between the upper and lower floats. It is assumed that the same dripper is used throughout the irrigation application, that all drippers are at the same level, and that frictional head loss is negligible.

gap between the upper and lower floats	dripper discharge when the control dripper is one irrigation dripper	dripper discharge when the control dripper is two irrigation drippers	dripper discharge when the control dripper is three irrigation drippers	dripper discharge when the control dripper is four irrigation drippers
zero gap	1000 ml	500 ml	333 ml	250 ml
4 mm	1103 ml	551 ml	368 ml	276 ml
8 mm	1206 ml	603 ml	402 ml	301 ml
12 mm	1309 ml	654 ml	436 ml	327 ml
16 mm	1412 ml	706 ml	471 ml	353 ml
20 mm	1515 ml	757 ml	505 ml	379 ml
24 mm	1618 ml	809 ml	539 ml	404 ml
28 mm	1721 ml	860 ml	574 ml	430 ml
32 mm	1825 ml	912 ml	608 ml	456 ml

Table 3. Volume of water discharged my each irrigation dripper for various choices for the control dripper and various choices for the gap between the upper and lower floats

6. Conclusion

The Terracotta Irrigation Controller for Latching Solenoids uses a radically different approach to irrigation scheduling called Measured Irrigation. See the Measured Irrigation website for more information: www.measuredirrigation.com.au

Conventional irrigation systems **indirectly** control the volume of water discharged by a dripper by using PC drippers to control the flow rate and an irrigation controller to control the time. However, Measured Irrigation **directly** controls the volume of water discharged by a dripper, rather than controlling the flow rate and the time. Because it is no longer necessary to control the flow rate, one can use NPC drippers as well as PC drippers.

NPC drippers can be used with any water supply pressure in the range 10 kPa to 800 kPa.

The Terracotta Irrigation Controller for Latching Solenoids uses on-site weather information rather than information from the Bureau of Meteorology, and so it is ideal for greenhouse applications.

If you are using pressurised irrigation with pressure compensating drippers, the following items are required.

- Pump for the rainwater tank
- Additional solenoid valves (one needed for each additional zone)
- Conventional irrigation controller
- Hose clamps

None of these items are required when you use the Terracotta Irrigation Controller for Latching Solenoids, and so the cost of installing and running the irrigation systems can be reduced dramatically.

The Terracotta Irrigation Controller for Latching Solenoids is a game-changer for automated irrigation on level ground from a rainwater tank.